Praven Pro 2.1 - Technical Summary
Date: October 22, 2025
Version: 2.1.0
Purpose: Automated biological validation for BirdNET acoustic monitoring data
System Overview
Praven Pro is a post-processing validation layer for BirdNET that applies biological rules to filter false positives. The system automates the manual validation workflow used in the Gaulossen study.
Core Components
1. Rule-Based Validation
Approach: Deterministic biological rules, not machine learning
Validation modules:
- Temporal: Activity patterns (diurnal/nocturnal/crepuscular)
- Habitat: Species-habitat preference matching
- Geographic: eBird/GBIF occurrence checking
- Taxonomic: Family-level biological constraints
Coverage:
- 40 bird families
- Primarily European species
2. Data Management
eBird preloading:
- Automatic cache checking on startup
- 7-day cache duration
- Auto-refresh when stale
- 50km radius, 30-day observation window
Performance:
- Eliminates API rate limiting
- Reduces validation time
- No manual data management required
3. Smart Review Selection
Purpose: Reduce manual review workload while maintaining validation quality
Method:
- Quality score calculation per detection:
- Base: BirdNET confidence score
- Modifier: +0.10 if no validation warnings
- Modifier: +0.05 if temporal window valid
- Modifier: +0.05 if habitat match valid
- Select top 3 highest-quality detections per species
- Manual review of representatives only
- Apply species-level decisions to all detections
Rationale:
- 3 samples provides statistical confidence
- Quality filtering ensures representative selection
- Species-level decisions are biologically justified
- Matches methodology from Gaulossen manual review
Performance (Gaulossen dataset):
- Original review requirement: 6,201 detections
- Smart review requirement: 192 detections (64 species × 3)
- Workload reduction: 96.9%
- Time estimate: 4 hours vs 207 hours
Validation Results
Blind Test (1,000 samples)
Methodology:
- Dataset: Gaulossen Nature Reserve (October 2025)
- Sample size: 1,000 detections (random selection)
- Ground truth: Expert-verified labels
- Test type: Blind (no prior exposure to labels)
Note: This was an internal development test used to tune validation rules. Results should not be considered independent validation as the test data was used during system development.
System Architecture
- BirdNET detection CSV (standard format)
- Study metadata: location, date, habitat type
- Optional: weather conditions
Processing
- Load and validate input data
- Apply temporal validation rules
- Apply habitat matching
- Apply geographic occurrence checking
- Apply taxonomic family rules
- Calculate composite validation score
- Classify: ACCEPT / REVIEW / REJECT
Output
- Validated detections CSV (all results)
- Accepted detections CSV (high confidence, pass all checks)
- Rejected detections CSV (biological violations)
- Review detections CSV (ambiguous cases)
- Priority review CSV (top 3 per species)
- Summary report (statistics and recommendations)
- Dashboard HTML (visualization)
Interfaces
Command Line
python validate.py input.csv --lat X --lon Y --habitat TYPE --date YYYY-MM-DD
Python API
from praven import BiologicalValidator, ValidationConfig
config = ValidationConfig(location=(lat, lon), habitat_type="wetland")
validator = BiologicalValidator(config)
result = validator.validate_detection(species, timestamp, confidence)
Web Interface
- Flask-based HTTP server
- Form-based configuration
- File upload interface
- Result download
Package
Taxonomic Coverage
Family-Level Rules (40 families)
Example families:
- Picidae: All strictly diurnal
- Strigidae: All nocturnal/crepuscular
- Hydrobatidae: All pelagic oceanic
- Anatidae: Wetland specialists
- Alcidae: Coastal/oceanic only
Coverage estimate:
- Picidae: 200+ species
- Strigidae: 250+ species
- Anatidae: 150+ species
- Scolopacidae: 90+ species
- Total: ~4,000 species across 40 families
Comparison to Manual Review
Gaulossen Study Manual Process
- Initial detections: 6,805
- Stage 1 (audio quality): 6,805 → 4,108 (60.4% pass)
- Stage 2 (biological): Manual review of remaining
- Final verified: 74 species
- Time investment: ~227 minutes total
Automated Process (Praven Pro)
- Input: 6,805 detections
- Auto-accept: 581 (8.5%)
- Auto-reject: 23 (0.3%)
- Review required: 6,201 (91.1%)
- Smart review: 192 (2.8% - top 3 per species)
- Time estimate: ~4 hours for priority review
Validation Accuracy
- Known false positives caught: 23/23 (100%)
- Lesser Spotted Woodpecker (nocturnal): 14
- European Storm-Petrel (oceanic inland): 4
- Manx Shearwater (pelagic inland): 3
- Bar-headed Goose (non-native): 1
- Western Capercaillie (habitat): 1
Technical Specifications
Dependencies
- Python 3.8+
- pandas >= 1.5.0
- numpy >= 1.20.0
- requests >= 2.25.0
- scikit-learn >= 1.0.0
- pydantic >= 2.0.0
Optional Dependencies
- Flask >= 2.0.0 (web interface)
- plotly >= 5.0.0 (visualization)
- matplotlib >= 3.5.0 (charts)
Data Files
species_db.json: 62 manually curated species
taxonomic_rules.json: 40 family-level rule sets
- eBird cache: Regional occurrence data (auto-managed)
- Validation speed: ~100 detections/second (without API calls)
- Memory usage: ~50MB + data size
- Cache size: ~1-5MB per region
Limitations
1. Geographic Scope
- eBird data availability varies by region
- Best coverage in North America and Europe
- Limited coverage in some tropical regions
2. Taxonomic Coverage
- 40 families covers most common species
- Rare families may lack specific rules
- Falls back to order-level rules when available
3. Edge Cases
- Vagrant species may be incorrectly flagged
- Migration timing not fully implemented
- Coastal/inland boundaries are approximate
4. Conservative Approach
- High review rate (91%) prioritizes accuracy over automation
- May flag valid detections for review in edge cases
- Designed to minimize false negatives (missed errors)
License
Non-commercial use only. Free for:
- Academic research
- Educational purposes
- Non-profit conservation work
- Scientific publications
Commercial use requires separate licensing. Contact: ghredpath@hotmail.com
Citation
Redpath, G. (2025). Praven Pro 2.1: Rule-Based Biological Validation for
BirdNET Acoustic Monitoring. GitHub. https://github.com/Ziforge/praven-pro
Validated on: Gaulossen Nature Reserve Acoustic Study (6,805 detections,
82 species, 48.8 hours recording, October 2025)
Files and Documentation
Core Documentation
README.md: Overview and quick start
INSTALL.md: Installation instructions
QUICKSTART.md: Usage examples
TECHNICAL_SUMMARY.md: This file
Scientific Documentation
SCIENTIFIC_VALIDATION_RESULTS.md: Blind test results (1,000 samples)
GAULOSSEN_RESULTS.md: Real-world validation results
SMART_REVIEW_GUIDE.md: Review workflow documentation
Implementation Details
PRAVEN_2.0_SUMMARY.md: System architecture and design
EXTENSIONS_SUMMARY.md: Feature implementation details
Future Development
Potential Enhancements
- Regional migration timing windows
- Subspecies-level rules
- Seasonal abundance integration
- Weather-activity correlation refinement
- Additional taxonomic families
Known Issues
- None critical
- Edge cases documented in limitations section
- Repository: https://github.com/Ziforge/praven-pro
- Issues: https://github.com/Ziforge/praven-pro/issues
- Email: ghredpath@hotmail.com